Regulation of cellular metabolism: programming and maintaining metabolic homeostasis.

نویسنده

  • David F Wilson
چکیده

Mitochondrial oxidative phosphorylation is programmed to set and maintain metabolic homeostasis. This is accomplished through an intrinsic program that determines the metabolic [ATP]/[ADP]/[Pi], where [Pi] is the concentration of inorganic phosphate (energy state) and maintains it through a bidirectional sensory/signaling control network that reaches every aspect of cellular metabolism. The program sets the energy state with high precision (to better than one part in 10(9)) and can respond to transient changes in energy demand (ATP use) to more than 100 times the resting rate. Epigenetic and environmental factors are able to "fine tune" the programmed set point over a narrow range to meet the special needs associated with cell differentiation and chronic changes in metabolic requirements. The result is robust, across platform control of metabolism, essential to cellular differentiation and the evolution of complex organisms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Bone Metabolism

Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation,...

متن کامل

The role of PAS kinase in regulating energy metabolism.

Metabolic disorders, such as diabetes and obesity, are fundamentally caused by cellular energy imbalance and dysregulation. Therefore, understanding the regulation of cellular fuel and energy metabolism is of great importance to develop effective therapies for metabolic disease. The cellular nutrient and energy sensors, AMPK and TOR, play a key role in maintaining cellular energy homeostasis. L...

متن کامل

Molybdenum Cofactor Biology and Disorders Related to Its Deficiency; A Review Study

Background: Molybden, as a vital and essential micronutrient is directly involved in the metabolism of other elements including carbon, sulfur, and nitrogen. Molybdenum alone is not biologically active unless it binds to specific cofactors. Except for the bacterial nitrogenase, which contains molybdenum-Iron complex, molybdenum cofactor (Moco) is considered as the bioactive component placed in ...

متن کامل

Klotho Protein,A Biomarker for AKI

Klotho is an anti-aging single-pass membrane protein that is mainly produced in the kidney. The level of soluble klotho decreases with age and the klotho gene is associated with an increased risk of age-related diseases, such as diabetes, skin atrophy, chronic kidney disease, ataxia and cancer. The klotho gene is composed of five exons and encodes a membrane glycoprotein located in the plasma ...

متن کامل

Amino Acid Sensing via General Control Nonderepressible-2 Kinase and Immunological Programming

Metabolic adaptation to the changing nutrient levels in the cellular microenvironment plays a decisive role in the maintenance of homeostasis. Eukaryotic cells are equipped with nutrient sensors, which sense the fluctuating nutrients levels and accordingly program the cellular machinery to mount an appropriate response. Nutrients including amino acids play a vital role in maintaining cellular h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of applied physiology

دوره 115 11  شماره 

صفحات  -

تاریخ انتشار 2013